Wouter Aukema
Spot Data Insights Others Miss
Tuesday, May 20, 2025
Contacts for EMA and National Competent Authories
Based on this EMA source: https://www.ema.europa.eu/en/documents/other/detailed-guide-regarding-eudravigilance-data-management-activities-european-medicines-agency_en.pdf
Member State Sender Typical first two sections of Identifier ICSR WWIDs Contact address for ICSRs
Austria BASGAGES AT-BASGAGES- nebenwirkung@basg.gv.at
Belgium AFIGP BE-FAMHP- adr@fagg-afmps.be
Bulgaria BDA BG-BDA- pharmacovig@bda.bg
Croatia ALMP HR-HALMED- nuspojave@halmed.hr
Cyprus CYPPVPR CY-PPVPR- phv@phs.moh.gov.cy
Czech Republic CZSUKL CZ-CZSUKL- el.icsr@sukl.cz
Denmark DKMAEUDRA DK-DKMA- ICSRquality@dkma.dk
Estonia SAM EE-SAM- pharmacovig@ravimiamet.ee
Finland FINAMW FI-FIMEA- fimea.ev@fimea.fi
France AFSSAPS FR-AFSSAPS- anpv@ansm.sante.fr
Germany (BfArM) BFARM DE-ADRED- uaw@bfarm.de
Germany (BfArM) BFARM DE-AMK- uaw@bfarm.de
Germany (BfArM) BFARM DE-BFARM- uaw@bfarm.de
Germany (BfArM) BFARM DE-CADRBFARM- uaw@bfarm.de
Germany (BfArM) BFARM DE-DCGMA- uaw@bfarm.de
Germany (BfArM) BFARM DE-EMBRYOTOX- uaw@bfarm.de
Germany (PEI) PEI DE-AMK- pharmacovigilance1@pei.de
Germany (PEI) PEI DE-DCGMA- pharmacovigilance1@pei.de
Germany (PEI) PEI DE-PEI- pharmacovigilance1@pei.de
Greece GREOF GR-GREOF- ev@eof.gr
Hungary OGYIP HU-OGYI- adr.box@ogyei.gov.hu
Iceland ADALIMCA01 IS-IMA- Aukaverkun@lyfjastofnun.is
Ireland IMB IE-HPRA- medsafety@hpra.ie
Italy MINISAL02 IT-MINISAL02- farmacovigilanza@aifa.gov.it
Latvia LRZBP2005 LV-SAM- info@zva.gov.lv
Liechtenstein KARZNEI LI-
Lithuania SMCAP LT-SMCA- NepageidaujamaR@vvkt.lt
Luxembourg DPM LU-ALMPS- pharmacovigilance@ms.etat.lu
Malta ADM MT-ADM- postlicensing.medicinesauthority@gov.mt
Netherlands CBGMEB NL-LRB- info@lareb.nl
Norway NOMAADVRE NO- adr@noma.no
Norway NOMAADVRE NOMAADVRE- adr@noma.no
Poland URPLWEBP PL-URPL- ndl@urpl.gov.pl
Portugal INFARMED PT-INFARMED- farmacovigilancia@infarmed.pt
Romania NMA RO-NMA- farmacovigilenta@anm.ro
Slovakia SUKLSK SK-SUKLSK- neziaduce.ucinky@sukl.sk
Slovenia ARSZMP SI-JAZMP- h-farmakovigilanca@jazmp.si
Spain AGEMED ES-AEMPS- fvicsr@aemps.es
Sweden SEMPA SE-MPA- Central.Biv@lakemedelsverket.se
Thursday, May 16, 2024
3 Steps to Navigate all Adverse Events Reports registered at EMA
Three steps to navigate all reported adverse events published by the European Medicines Agency from from 2002 until March 27, 2023 for Case Safety Reports submitted by patients and health care providers from both in- and outside the European Economic Area.
1. Install a 14 day free trial version of Tableau Desktop on your computer.
https://www.tableau.com/products/desktop/download
(Do not use the Tableau Public version as it has limited functionality and cannot handle the EMA Dashboard file)
2. Download the eudravigilance_march-2023.twbx file to your computer via:
https://drive.google.com/file/d/16RRvQJZ6VEyAF_Gm4DDPtE200esXTlSM/view?usp=share_link
3. Start Tableau and open eudravigilance_march-2023.twbx
(This is a big dashboard, please allow some time for loading and processing)
Friday, April 19, 2024
EMA Eudravigilance - Dashboard and collector tool
The tool downloads everything, both serious and non-serious line listings and both products and substances.
Later I will post the shell scripts and SQL statements to process the CSV files into PostgreSQL
If you have questions, pls feel free to leave a comment.
Download python script here: https://drive.google.com/file/d/1Zs8HiB3W-bd77OspdTrnhb8WiXsskfTM/view?usp=sharing
The Tableau dashboard is work in progress but can be downloaded here: https://drive.google.com/file/d/16RRvQJZ6VEyAF_Gm4DDPtE200esXTlSM/view?usp=share_link
(download a 14d trial of Tableau to open the dashboard)
import errno, json, hashlib, logging, pprint, urllib.request, re, requests, os, ssl, sys, time, threading, queue
from concurrent.futures import ThreadPoolExecutor
from itertools import product
from pathlib import Path
from multiprocessing.pool import ThreadPool
from urllib.parse import urlparse, unquote, urlencode
from requests.utils import requote_uri
from termcolor import colored
"""
# EMA Crawler
Crawls data from adrreports.eu and converts it into
data CSV and TXT files. The script operates from
the working directory and will create a "temp/", "output/" and "downloads/" subdirectory.
The "temp/" subdirectory will contain remote cache files and
an "output/" directory, the latter will contain the output files.
If downloads are performed the downloads are stored in a "downloads/" directory, this
directory holds hash references to keep track of what it's origins.
* Authors: In alphabetical order:
* Twan van der Poel <twan@vanderpoelsoftware.com>
* Wouter Aukema <waukema@gmail.com>
* Usage: python3 ema-crawler.py
* Version: 1.98
# Changelog
## 1.98
* Used new session for each executor.map iteration
* Further integration of multithreading
* Temporary removal of hash-subdirectory
* Added stopwatch
## 1.97
* Dynamic non-configurable download directory
* Recycled session for each .get call
* Removed last bits of BIN_CHROMEDRIVER
* Dedicated function for remote calls
* Further integration of remote HTTP errors
* Resolved several encoding issues
## 1.96
* Simplified target directory based on files' md5 hash
* Wrapped executor in progress-bar
* Added parameter VERBOSE_DEBUGGING
## 1.95
* Added setting for verbose chromedriver logging
* Removed Selenium approach
* Integrated requests.Session()
## 1.94
* Integrated dynamic download storage
* Feature which moves downloads to their final location
* Added setting USE_DOWNLOADS_CACHE
## 1.93
* Integrated generic fatal_shutdown handler
## 1.92
* Headless support for Chromedriver
* Integrated storage filenames in list of downloads
* Integrated filters to capture downloads of more than 250K of lines properly
* Added parameter "MAX_PRODUCT_COUNT" for testing small chunks
* Dynamic construction of URL (incl. filters)
* Cache integration in download directory
* Dynamic construction of filter combinations for Covid related HLC's
## Todo
* Replace hard-coded ID's with detection of 250k limitation
"""
# Settings
MAX_PRODUCT_COUNT = None
MAX_THREADS = 20
USE_DOWNLOADS_CACHE = False
VERBOSE_DEBUGGING = False
connect_timeout: int = 40
download_timeout: int = 100
# Variables used to split up large downloads
variables = {
'Seriousness': 'Serious',
'Regulatory Primary Source Country EEA/Non EEA': 'European Economic Area',
'Primary Source Qualification': 'Healthcare Professional',
'Sex': 'Female',
}
# Years used to split up large downloads
years = {
'2017': '2017',
'2018': '2018',
'2019': '2019',
'2020': '2020',
'2021': '2021',
'2022': '2022',
'2023': '2023',
'2024': '2024',
}
# Timing
executionStart = time.time()
print("Version 1.98")
# Function which handles fatal shutdowns
def fatal_shutdown(errorMessage, identifier):
print(colored('+--------------------------------------------------+', 'red'))
print(colored('| EMA crawler crashed, please read the error below |', 'red'))
print(colored('+--------------------------------------------------+', 'red'))
print(colored(errorMessage, 'yellow')+" "+colored("("+identifier+")", "white"))
sys.exit()
# Function which debugs verbose logging (if enabled)
def verbose_debug(logMessage):
if not VERBOSE_DEBUGGING:
return
print(logMessage)
# Helper to exit execution
def exit():
sys.exit()
# Determine downloads directory
downloadsPath = ("%s%sdl" % (os.getcwd(), os.sep))
# Default EMA DPA base URL
emaBaseUrl = 'https://dap.ema.europa.eu/analytics/saw.dll?Go'
# Prepare thread storage
threadStorage = threading.local()
# Pre-perform validation
if MAX_PRODUCT_COUNT is not None and not isinstance(MAX_PRODUCT_COUNT, int):
fatal_shutdown("MAX_PRODUCT_COUNT must be one of; numeric, None", "V01")
if not isinstance(MAX_THREADS, int) or MAX_THREADS < 1:
fatal_shutdown("MAX_THREADS must be numeric, at least 1", "V02")
if not os.path.exists(downloadsPath):
os.mkdir(downloadsPath)
if not os.path.exists(downloadsPath):
fatal_shutdown("Downloads directory does not exist (and could not be created)", "V03")
# Ensure working directories
basepath = os.path.dirname(os.path.abspath(sys.argv[0]))+os.sep
workdirs = ['temp'+os.sep, 'output'+os.sep, 'downloads'+os.sep]
for workdir in workdirs:
fullpath = basepath+workdir
if not os.path.exists(fullpath):
os.mkdir(fullpath)
if not os.access(fullpath, os.W_OK):
fatal_shutdown(("Working directory %s is not writable" % fullpath), "P01")
# Define important directories
CACHEDIR = basepath+workdirs[0]
OUTPUTDIR = basepath+workdirs[1]
# Function which creates a directory
def create_directory(directory):
try:
os.mkdir(directory)
except OSError as exc:
if exc.errno != errno.EEXIST:
raise
pass
# Function which initiates the thread executor
def initiate_thread_executor(resources):
# Determine index
threadStorage.threadIndex = resources.get(False)
# Open initial session and authenticate
threadStorage.localSession = requests.Session()
# Prepare params
params = {
'Path': '/shared/PHV DAP/DAP/Run Line Listing Report',
'Format': 'txt',
'Extension': '.csv',
'Action': 'Extract',
'P0': 0
}
# Initial request
ema_get_remote(threadStorage.localSession, params)
# Function which fetches an URL and caches it by a hash
def fetch_remote_url(url):
hash = hashlib.md5(url.encode()).hexdigest()
cacheFile = CACHEDIR+hash+".html"
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE
if os.path.exists(cacheFile):
verbose_debug("Fetching local from %s" % url)
contents = Path(cacheFile).read_text()
return contents.encode('utf-8')
else:
verbose_debug("Fetching remote from %s" % url)
try:
with urllib.request.urlopen(url, context=ctx) as response:
content = response.read()
if not content:
fatal_shutdown("Unable to fetch remote data from '%s'" % url, "R01")
except:
verbose_debug("Remote data is empty '%s'" % url)
content = "".encode('utf-8')
f = open(cacheFile, "wb")
f.write(content)
f.close()
return fetch_remote_url(url)
# Function which creates BI filtered URL's
def create_filtered_url(combination):
filters = combination['filters']
params = {}
params['Path'] = '/shared/PHV DAP/DAP/Run Line Listing Report'
params['Format'] = 'txt'
params['Extension'] = '.csv'
params['Action'] = 'Extract'
paramCounter = 0
if len(filters) > 0:
keyName = ('P%d' % paramCounter)
params[keyName] = len(filters)
paramCounter = paramCounter + 1
for filter in filters:
keyName = ('P%d' % paramCounter)
params[keyName] = filter[0]
paramCounter = paramCounter + 1
keyName = ('P%d' % paramCounter)
familyName = ('"Line Listing Objects"."%s"' % filter[1])
params[keyName] = familyName
paramCounter = paramCounter + 1
keyName = ('P%d' % paramCounter)
params[keyName] = (("1 %s" % filter[2]))
paramCounter = paramCounter + 1
baseUrl = emaBaseUrl
url = baseUrl
for property in params:
value = params[property]
params[property] = value
url += ('&%s=%s' % (property, params[property]))
return {
'baseUrl': baseUrl,
'params': params,
'url': url
}
# Function which calls remote with the right session and headers
def ema_get_remote(localSession, localParams):
# Prepare statics
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36'
}
errorPattern = r'<div class="ErrorMessage">(.*?)</div>'
# Perform request
response = localSession.get(emaBaseUrl, params=localParams, headers=headers, timeout=(connect_timeout, download_timeout))
# Non 200 code?
if response.status_code != 200:
print(localParams)
fatal_shutdown(f"Non remote 200 HTTP code, got {response.status_code}", "EGR01")
# Explicitly specify the encoding if needed
responseText = response.content.decode('utf-16', errors='replace')
# Extract remote error?
match = re.search(errorPattern, responseText, re.DOTALL)
if match:
print(localParams)
fatal_shutdown(("Remote URL got error-response: %s" % match.group(1)), "EGR02")
# Here you go, sir.
return responseText
# Function which process compiled (downloadable) items
def process_compiled_item(item):
# Prepare target
hash = hashlib.md5(item['DownloadUrl'].encode()).hexdigest()
#targetDirectory = "%s%s%s" % (downloadsPath, os.sep, hash)
targetDirectory = "%s%s" % (downloadsPath, os.sep)
targetFilename = "%s%s%s" % (targetDirectory, os.sep, item['OutputFile'])
# Apply cache?
if USE_DOWNLOADS_CACHE and os.path.exists(targetFilename):
if not VERBOSE_DEBUGGING:
bar()
return
# Create target directory
create_directory(targetDirectory)
# Debug
verbose_debug("\nProcessing download")
verbose_debug("-------------------")
verbose_debug("-> HLC: "+item['HighLevelCode'])
verbose_debug("-> URL: "+item['DownloadUrl'])
verbose_debug("-> Into: "+targetDirectory)
verbose_debug("-> File: "+targetFilename)
# Perform the request
responseText = ema_get_remote(threadStorage.localSession, item['Params'])
# Write response body to file
with open(targetFilename, 'w', encoding='utf-8') as file:
file.write(responseText)
verbose_debug("-> READY")
if not VERBOSE_DEBUGGING:
bar()
# Function which generates a matrix
def generate_matrix(variables):
options = [[]]
for name, value in variables.items():
newOptions = []
for option in options:
newOptions.append(option + [f"{name}={value}"])
newOptions.append(option + [f"{name}!={value}"])
options = newOptions
return options
# Fetch product- and substances list
collection = []
productCounter = 0
breakIteration = False
baseUrls = {}
baseUrls['products'] = 'https://www.adrreports.eu/tables/product/'
baseUrls['substances'] = 'https://www.adrreports.eu/tables/substance/'
chars = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '0-9']
for type in baseUrls:
baseUrl = baseUrls[type]
baseType = type[:-1].capitalize()
for char in chars:
indexUrl = "%s%s.html" % (baseUrl, char)
content = fetch_remote_url(indexUrl)
pattern = r"<a\s+.*?</a>"
matches = re.findall(pattern, str(content))
for match in matches:
# Extract CA
centrallyAuthorized = "1"
if type == 'substances':
centrallyAuthorized = "0"
if re.search(r"\*", match):
centrallyAuthorized = "1"
# Extract URL
words = match.strip().split('"')
url = words[1]
# Extract code
parsed = urlparse(unquote(url))
words = parsed.query.split('+')
code = words[-1]
# Extract name
parsed = match.split(">")
parsed = parsed[1].split("<")
name = parsed[0]
# Construct filters:
# First parameter is the total count of parameters
# Then, groups of 3 parameters are added
# Parameters above are respectively: operator, var1, var2 or value
combinations = []
# Default definition
defaultFilters = []
defaultFilters.append(['eq', baseType+' High Level Code', code])
defaultFilters.append(['eq', 'Seriousness', 'Serious'])
# Prepare outputfile
filterString = ""
# For Covid related HLC's we chop up the result because of a 250K line listing limit)
if type == 'substances' and code in ['40983312', '40995439', '42325700', '21755']:
# Generate matrix
matrix = generate_matrix(variables)
# Construct combo
comboCounter = 0
for year in years:
for square in matrix:
filterString = ""
filters = defaultFilters.copy()
filters.append(['eq', 'Gateway Year', year])
for point in square:
if re.search('!=', point):
variable, value = point.split('!=')
operator = 'neq'
filterString += "_Not"
else:
variable, value = point.split('=')
operator = 'eq'
filters.append([operator, variable, value])
filterString += ("_%s" % value)
comboCounter = comboCounter + 1
outputFile = ("%s_%s_%s%s.csv" % (type, code, year, filterString))
targetfile = downloadsPath + '/' + outputFile
if not os.path.exists(targetfile):
#print(f"{outputFile} exists")
#print(f"Working on {outputFile}")
combinations.append({'filters': filters, 'outputFile': outputFile, 'code': code, 'type': type})
else:
# Default ID match filter
filters = defaultFilters.copy()
outputFile = ("%s_%s.csv" % (type, code))
targetfile = downloadsPath + '/' + outputFile
if not os.path.exists(targetfile):
#print(f"Working on {outputFile}")
combinations.append({'filters': filters, 'outputFile': outputFile, 'code': code, 'type': type})
# Raise product-counter
productCounter += 1
# Run every combination
for combination in combinations:
# Create URL
result = create_filtered_url(combination)
# Replace placeholders
downloadUrl = result['url']
downloadUrl = downloadUrl.replace('$hlc', code)
downloadUrl = downloadUrl.replace('$type', type)
# Collection storage
item = {}
item['HighLevelCode'] = code
item['ProductName'] = name
item['CentrallyAuthorized'] = centrallyAuthorized
item['Type'] = type
item['BaseUrl'] = result['baseUrl']
item['IndexUrl'] = indexUrl
item['DownloadUrl'] = downloadUrl
item['OutputFile'] = combination['outputFile']
item['Filters'] = combination['filters']
item['Params'] = result['params']
collection.append(item)
#print(f"HLC: {item['HighLevelCode']}")
#hier wordt dus de lijst met HLCs opgetuigd
# Max product counter
if MAX_PRODUCT_COUNT and productCounter == MAX_PRODUCT_COUNT:
verbose_debug(("--> Warning: MAX_PRODUCT_COUNT reached = %d" % MAX_PRODUCT_COUNT))
breakIteration = True
break
if breakIteration:
break
if breakIteration:
break
# Preformat output
output = {}
for item in collection:
type = item['Type']
if not type in output.keys():
output[type] = []
output[type].append([str(item['HighLevelCode']), str(item['ProductName']), str(item['CentrallyAuthorized'])])
# Generate indexed output files
for type in output:
resultFile = "%s%s.txt" % (OUTPUTDIR, type)
verbose_debug("Generating output file %s" % resultFile)
if os.path.exists(resultFile):
os.remove(resultFile)
lines = output[type]
content = ""
for line in lines:
content += "\t".join(line)+"\n"
f = open(resultFile, "wb")
f.write(content.encode('utf-8'))
f.close()
# Debug
resultFile = "%surls.txt" % (OUTPUTDIR)
if os.path.exists(resultFile):
os.remove(resultFile)
verbose_debug("Generating URL output file %s" % resultFile)
content = ""
for item in collection:
content += "\n"+item['OutputFile']+"\n"+item['DownloadUrl']+"\n"
f = open(resultFile, "wb")
f.write(content.encode('utf-8'))
f.close()
# Run executor
if VERBOSE_DEBUGGING:
resources = queue.Queue(MAX_THREADS)
for threadIndex in range(MAX_THREADS):
resources.put(threadIndex, False)
with ThreadPool(MAX_THREADS, initiate_thread_executor, [resources]) as pool:
pool.map(process_compiled_item, collection)
else:
collectionLength = len(collection)
with alive_bar(collectionLength) as bar:
resources = queue.Queue(MAX_THREADS)
for threadIndex in range(MAX_THREADS):
resources.put(threadIndex, False)
with ThreadPool(MAX_THREADS, initiate_thread_executor, [resources]) as pool:
pool.map(process_compiled_item, collection)
# Fin
if MAX_PRODUCT_COUNT != None:
print(f"Requested {MAX_PRODUCT_COUNT} files")
runtime = round(time.time() - executionStart)
print(f"Execution finished in ~ {runtime} seconds")
Friday, June 25, 2021
Loading VAERS data into Postgres
For those who want to load VAERS data into Postgres, here's how I did it.
In case you have technical questions -> twitter: @waukema.
/*
DROP TABLE vaers.symptoms;
CREATE TABLE vaers.symptoms
(
id serial NOT NULL,
vaers_id char(7),
symptom1 character varying,
symptomversion1 numeric,
symptom2 character varying,
symptomversion2 numeric,
symptom3 character varying,
symptomversion3 numeric,
symptom4 character varying,
symptomversion4 numeric,
symptom5 character varying,
symptomversion5 numeric
)
WITH (
OIDS=FALSE
);
--msdos windows server 2008 postgres 9.3 using gnuwin32 utils:
--cat 2021VAERSSYMPTOMS.csv|psql -h localhost -d postgres -a -c "set client_encoding=latin1; copy vaers.symptoms (VAERS_ID, SYMPTOM1, SYMPTOMVERSION1, SYMPTOM2, SYMPTOMVERSION2, SYMPTOM3, SYMPTOMVERSION3, SYMPTOM4, SYMPTOMVERSION4, SYMPTOM5, SYMPTOMVERSION5) from stdin delimiter ',' CSV HEADER"
create table vaers.allsymptoms as
(
select
vaers_id,
symptom1 as symptom,
symptomversion1 as symptomversion
from
vaers.symptoms
where
symptom1 is not null
union all
select
vaers_id,
symptom2 as symptom,
symptomversion2 as symptomversion
from
vaers.symptoms
where
symptom2 is not null
union all
select
vaers_id,
symptom3 as symptom,
symptomversion3 as symptomversion
from
vaers.symptoms
where
symptom3 is not null
union all
select
vaers_id,
symptom4 as symptom,
symptomversion4 as symptomversion
from
vaers.symptoms
where
symptom4 is not null
union all
select
vaers_id,
symptom5 as symptom,
symptomversion5 as symptomversion
from
vaers.symptoms
where
symptom5 is not null
);
create index ix_allsymptoms_vaers_id on vaers.allsymptoms using btree (vaers_id);
create index ix_allsymptoms_symptom on vaers.allsymptoms using btree (symptom);
drop table vaers.vax ;
create table vaers.vax
(
id serial,
VAERS_ID varchar,
VAX_TYPE varchar,
VAX_MANU varchar,
VAX_LOT varchar,
VAX_DOSE_SERIES varchar,
VAX_ROUTE varchar,
VAX_SITE varchar,
VAX_NAME varchar
)
WITH (
OIDS=FALSE
);
--msdos postgres 9.3
--cat 2021VAERSSYMPTOMS.csv|psql -h localhost -d postgres -a -c "set client_encoding=latin1; copy vaers.symptoms (VAERS_ID, SYMPTOM1, SYMPTOMVERSION1, SYMPTOM2, SYMPTOMVERSION2, SYMPTOM3, SYMPTOMVERSION3, SYMPTOM4, SYMPTOMVERSION4, SYMPTOM5, SYMPTOMVERSION5) from stdin delimiter ',' CSV HEADER"
--cat 2021VAERSVAX.csv|psql -h localhost -d postgres -a -c "copy vaers.vax (VAERS_ID, VAX_TYPE, VAX_MANU, VAX_LOT, VAX_DOSE_SERIES, VAX_ROUTE, VAX_SITE, VAX_NAME) from stdin delimiter ',' CSV HEADER"
create index ix_vax_vaers_id on vaers.vax using btree (vaers_id);
drop table if exists vaers.data;
create table vaers.data
(
id serial,
VAERS_ID varchar,
RECVDATE varchar,
STATE varchar,
AGE_YRS varchar,
CAGE_YR varchar,
CAGE_MO varchar,
SEX varchar,
RPT_DATE varchar,
SYMPTOM_TEXT varchar,
DIED varchar,
DATEDIED varchar,
L_THREAT varchar,
ER_VISIT varchar,
HOSPITAL varchar,
HOSPDAYS varchar,
X_STAY varchar,
DISABLE varchar,
RECOVD varchar,
VAX_DATE varchar,
ONSET_DATE varchar,
NUMDAYS varchar,
LAB_DATA varchar,
V_ADMINBY varchar,
V_FUNDBY varchar,
OTHER_MEDS varchar,
CUR_ILL varchar,
HISTORY varchar,
PRIOR_VAX varchar,
SPLTTYPE varchar,
FORM_VERS varchar,
TODAYS_DATE varchar,
BIRTH_DEFECT varchar,
OFC_VISIT varchar,
ER_ED_VISIT varchar,
ALLERGIES varchar
)
WITH (
OIDS=FALSE
);
--msdos postgres 9.3
--cat 2021VAERSDATA.csv|psql -h localhost -d postgres -a -c "set client_encoding=latin1; copy vaers.data (VAERS_ID,RECVDATE,STATE,AGE_YRS,CAGE_YR,CAGE_MO,SEX,RPT_DATE,SYMPTOM_TEXT,DIED,DATEDIED,L_THREAT,ER_VISIT,HOSPITAL,HOSPDAYS,X_STAY,DISABLE,RECOVD,VAX_DATE,ONSET_DATE,NUMDAYS,LAB_DATA,V_ADMINBY,V_FUNDBY,OTHER_MEDS,CUR_ILL,HISTORY,PRIOR_VAX,SPLTTYPE,FORM_VERS,TODAYS_DATE,BIRTH_DEFECT,OFC_VISIT,ER_ED_VISIT,ALLERGIES) from stdin delimiter ',' CSV HEADER"
create index ix_data_vaers_id on vaers.data using btree (vaers_id);
*/
select
vv.VAX_MANU as manufaturer,
vv.VAX_NAME as vax_name,
VAX_TYPE,
RECVDATE,
count(distinct vd.vaers_id) as num_records
from
vaers.data vd
left join vaers.allsymptoms vs on vs.vaers_id = vd.vaers_id
left join vaers.vax vv on vv.vaers_id = vd.vaers_id
where
vs.symptom = 'Myocard%'
--and not vd.died = 'Y'
group by
vv.VAX_MANU,
vv.VAX_NAME,
VAX_TYPE,
RECVDATE
;
-- example:
WITH D as
(
select
vd.recvdate,
vd.state,
vd.age_yrs,
vd.sex,
vd.recovd,
vd.died,
vd.l_threat,
vd.hospital,
vd.disable,
vd.ofc_visit,
vs.symptom,
vv.vax_manu,
vv.vax_type,
vd.vaers_id
from
vaers.data vd
left join vaers.allsymptoms vs on vs.vaers_id = vd.vaers_id
left join vaers.vax vv on vv.vaers_id = vd.vaers_id
where
vs.symptom_text ilike '%myocardi%'
)
select
*
from D
limit 10
Tuesday, April 20, 2021
Analysis of ICSR reports at ema.europa.eu
Technical documentation to the article titled:
"The Costs of Covid-19 Vaccinations – Should we Rethink the Policy?"
This post provides documention for the analysis process that was performed with the abovementioned article (this link), as well as some additional visualisations produced from the data downloaded from EMA and ECDC.
Vaccination Volume Data from ECDC
The data for COVID-19 vaccination volumes can be found here:
https://www.ecdc.europa.eu/en/publications-data/data-covid-19-vaccination-eu-eea
Individual Case Safety Reports from EMA
1. To download all ICSR reports, follow the steps below.
Open http://www.adrreports.eu/en/search_subst.html, navigate to 'C' and search for COVID-19.
To download ICSR reports for ALL forms of medication, one would need to visis the 4,000+ entries listed. As a workaround, I have a shortcut described below.
Since EMA does not allow the public to download all ICSR reports for all forms of medication in one go, I came up with a work around, by manipulating the url for entering their Oracle back end. By simply not specifying the identifier for a parrticular substance, all ICSR reports on all forms of medication get shown.
Shortcut to all Substances (incl. COVID19-vaccines)
Generate and download the ICSR Line listings for COVID, Measles and Influenza vaccines as well as the shortcut for all forms of medication, and repeat steps 2, 3 and 4 explained below, for each of the vaccines:
2. Export the ICSR reports to TAB-delimited text files as follows:
Navigate to the tab labelled 'Line Listing'.
For Geographic Region, select 'European Economic Area'.
Next, click on 'Run Line Listing Report'. This will open a new window and present you with the ICSR reports in tabular format. This may take a while.
Navigate all the way to the bottom and start the export as shown in the image below:
The export will be saved to the default Downloads folder of your web-browser.
3. Convert and rename all exported files to UTF-8 encoding (e.g. using Notepad++ for Windows).
In the instructions below, I used a naming convention as follows: MMMDD_export_[substance].csv
4. Load the exported file into PostgreSQL
Create a schema and table in PostgreSQL (I use an old version 9.1 on an old Windows Server 2008)
CREATE TABLE ema.sta_icsr
(
source varchar,
elocnr character varying,
reporttype character varying,
evgatewayrecdate character varying,
primarysourcequalification character varying,
primarysourcecountryforregulatorypurposes character varying,
literaturereference character varying,
patientagegroup character varying,
patientagegroupperreporter character varying,
parentchildreport character varying,
patientsex character varying,
reactionlist character varying,
suspectdruglist character varying,
concomitant character varying,
icsrform character varying
)
WITH (
OIDS=FALSE);
Description of the DOS command: For each export file (%f), skip header, add a column identifying the filename, replace some unreadable characters, prepend backslashes with a backslash and tell psql to execute the copy command.
5. De-duplication of records
To de-duplicate, we need a table that holds only unique entries. Also, we need to give priority / precedence to specific substances, before we load the rest (all substances thru that manipulated url).
id serial,
source varchar,
elocnr varchar
)
without oids;
insert into ema.dwh_geneloc (source, elocnr)
select
source, elocnr
from
ema.sta_icsr
where
not (elocnr) in (select elocnr from ema.dwh_geneloc group by elocnr)
and source like '%pfizer%'
;
insert into ema.dwh_geneloc (source, elocnr)
select
source, elocnr
from
ema.sta_icsr
where
not (elocnr) in (select elocnr from ema.dwh_geneloc group by elocnr)
and source like '%astrazeneca%'
;
insert into ema.dwh_geneloc (source, elocnr)
select
source, elocnr
from
ema.sta_icsr
where
not (elocnr) in (select elocnr from ema.dwh_geneloc group by elocnr)
and source like '%moderna%'
;
insert into ema.dwh_geneloc (source, elocnr)
select
source, elocnr
from
ema.sta_icsr
where
not (elocnr) in (select elocnr from ema.dwh_geneloc group by elocnr)
and source like '%janssen%'
;
insert into ema.dwh_geneloc (source, elocnr)
select
source, elocnr
from
ema.sta_icsr
where
not (elocnr) in (select elocnr from ema.dwh_geneloc group by elocnr)
and source like '%MMR%'
;
insert into ema.dwh_geneloc (source, elocnr)
select
source, elocnr
from
ema.sta_icsr
where
not (elocnr) in (select elocnr from ema.dwh_geneloc group by elocnr)
and source like '%Influenza-split-virion-inactivated%'
;
insert into ema.dwh_geneloc (source, elocnr)
select
source, elocnr
from
ema.sta_icsr
where
not (elocnr) in (select elocnr from ema.dwh_geneloc group by elocnr)
and source like '%influenza-live-nasal%'
;
insert into ema.dwh_geneloc (source, elocnr)
select
source, elocnr
from
ema.sta_icsr
where
not (elocnr) in (select elocnr from ema.dwh_geneloc group by elocnr)
and source like '%all_all%'
;
create index ix_staicsr_elocnr on ema.sta_icsr using btree (elocnr);
create index ix_geneloc_source on ema.dwh_geneloc using btree (source);
create index ix_geneloc_elocnr on ema.dwh_geneloc using btree (elocnr);